
Chapter 8

Electromagnetic waves

8.1 Electromagnetism  a lightning review

The theory of electromagnetism revolves around the fields �E and �B,
defined through the Lorentz force law :

�F = q
�
�E + �v × �B

�
(8.1)

In addition, we define auxiliary fields �D and �H. Although today we

consider �E and �B as the fundamental ones, and �D and �H as derived
quantities, for historical reasons it is customary to consider �E and �H

as fundamental fields.

Field Definition Constitutive Relations Linear isotropic media Vacuum

�D �0 �E + �P �D
�
�E, �H

�
� �E �0 �E

�B μ �H + �M �B
�
�E, �H

�
μ �H μ0

�H

In the above, the fields �P and �M are the polarization and magneti
zation vector fields, respectively.

These fields are governed by the four Maxwell equations :

∇ ∙ �D = ρ (8.2)

∇ ∙ �B = 0 (8.3)

∇× �E +
∂ �B

∂t
= 0 (8.4)

∇× �H −
∂ �D

∂t
= �j (8.5)

where ρ and �j are the charge and current densities, respectively! Taking
the divergence of (8.5) and using (8.2) we land up with the equation of

8.0
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continuity

∇ ∙�j +
∂ρ

∂t
= 0. (8.6)

The significance of this equation is clear from its integral version (which
follows by integrating both sides over volume and using the Gauss di
vergence theorem)

dQ

dt
= −

�

Σ

�j ∙ d�s (8.7)

where Q is the total charge in the region bounded by the closed surface
Σ. This implies that the total charge in a region decreases only by the
charge flowing out of its surface, since �j ∙ d�s is the charge crossing the
surface area d�s in unit time.

An important quantity for our discussion is the Poynting vector �S

defined by
�S = �E × �H (8.8)

Its significance can be seen by calculating its divergence

∇ ∙ �S = ∇ ∙
�
�E × �H

�
= ∇× �E ∙ �H − �E ∙ ∇ × �H

= −
∂ �B

∂t
∙ �H − �E ∙

�

�j +
∂ �D

∂t

�

In the above we have used the vector calculus identity1 ∇ ∙
�
�A× �B

�
=

∇× �A ∙ �B − �A ∙ ∇ × �B. For linear isotropic media, we have

∇ ∙ �S = −�j ∙ �E −
∂

∂t

� �

2
E2 +

μ

2
H2

�

Since �
2
E2 + μ

2
H2 is the elctromagnetic energy density wem, this means

that
∂wem

∂t
= −�j ∙ �E −∇ ∙ �S (8.9)

This means that the electromagnetic energy in a region can decrease

in two ways  by means of Joule heating loss (the −�j ∙ �E term) and

by transport across the surface bounding the region (the −∇ ∙ �S term).
So, we interpret the Poynting vector as the energy flowing through a
surface normal to it per unit area per unit time.

Maxwell’s equations also lead to the following continuity conditions
for the fields at the interface of two media (in the absence of any surface
charges or currents) :

1∇ ∙

“
�A× �B

”
= ∂i

`
�ijkAjBk

´
= �ijk (∂iAj) Bk + Aj

`
�ijk∂iBk

´
=

“
∇× �A

”

k
Bk −

Aj

“
∇× �B

”

j
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1. The tangential components of �E and �H are continuous across the
interface

2. The normal components of �D and �B are continuous across the
interface.

8.2 The wave equation in linear isotropic me

dia

Consider a linear isotropic medium where there are no free charges.
Here, Maxwell’s equations become

∇ ∙ �E = 0 (8.10)

∇ ∙ �B = 0 (8.11)

∇× �E +
∂ �B

∂t
= 0 (8.12)

∇× �B − μ�
∂ �E

∂t
= 0 (8.13)

where we have used the constitutive relations �D = � �E and �B = μ �H to
express all the four equations in terms of �E and �B. Note that (8.11)
and (8.12) are independent of sources and medium  and are hence
identical to our general equations (8.3) and (8.4).

We now take curl of both sides of Faraday’s law, (8.12) to get

∇×
�
∇× �E

�
+∇×

�
∂ �B

∂t

�

= 0

Now we make use of the fact that the curl and ∂
∂t

commute (which
follows from the commutativity of mixed partial derivatives) and also

the vector calculus identity2 ∇×
�
∇× �A

�
= ∇

�
∇ ∙ �A

�
−∇2 �A to get

∇
�
∇ ∙ �E

�
−∇2 �E +

∂

∂t

�
∇× �B

�
= 0.

Using (8.10) and (8.13) in the above, we get

∇2 �E = μ�
∂2 �E

∂t2
(8.14)

Propceeding in a similar fashion, but starting with (8.13) would give us

∇2 �B = μ�
∂2 �B

∂t2
. (8.15)

2∇ ×

“
∇× �A

”
= �ijk êi∂j

“
∇× �A

”

k
= �ijk êi∂j (�klm∂lAm) = �ijk�klmêi∂j∂lAm =

`
δikδjl − δilδkl

´
êi∂j∂lAm = êi∂i∂jAj − êi∂j∂jAi = ∇

“
∇ ∙ �A

”
−∇2 �A
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Thus both �E and �B obey the equation of a wave in three dimensions.
So, in a charge free space in a linear isotropic dielectric the electric and
magnetic fields propagate as a wave and the speed of this wave is

v =
1
√
μ�

(8.16)

In particular, for the speed of this wave in vacuum, we have

c =
1

√
μ0�0

. (8.17)

This comes out to be about 3 × 108 ms−1, a value that matches the
speed of light in vacuum (which is obviously much, much greater than
the speed of anything else!). This coincidence in numerical value lead
Maxwell to the hypothesis that light is an electromagnetic wave. Of
course, this mere coincidence was not enough to convince anybody
(even Maxwell himself) of the truth of this fact. As we will see, we can
use Maxwell’s equations to predict experimentally verifiable properties
for electromagnetic waves  which turn out to match those of light! So
succesful was Maxwell in predicting the properties of light in this way
that it was soon accepted that science has finally uncovered the answer
to the vexing question  “just what is waving in a light wave?”3

8.3 Plane progressive EM waves

As we have seen, a special solution of the three dimensional wave equa
tion is the plane progressive wave. So, in a sourcefree linear isotropic
dielectric, we have the solutions

�E = �E0e
i(�k∙�r−ωt) (8.18)

�B = �B0e
i(�k∙�r−ωt) (8.19)

where we have
ω
�
�
��k

�
�
�

=
1
√
μ�

= v.

Of course, we don’t really mean that the electric or magnetic field is
complex  the actual fields are real parts of the complex vectors.

We now proceed to find out what the Maxwell’s equations have to
say about the fields. For this we note that because our waves have

3Quite a lot is often made of the fact that historically quantum mechanics had started
with a wave function (Schrödinger) even though the interpretation of just what was wav
ing in that wave ( Born) was missing for a long time. Note that in the case of light there
was a gap of more than half a century between the discovery that light is a wave (Young)
and the discovery that it is an elctromagnetic wave (Maxwell)!
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an exponential space and time dependence  the derivative operators ∇
and ∂

∂t
have very simple effects :

∇ ≡ i�k,
∂

∂t
≡ −iω (8.20)

Using (8.20) in the four Maxwell’s equations (8.108.13) leads to the
relations

i�k ∙ �E = 0, from Gauss law

i�k ∙ �B = 0, from Gauss law for magnetism

i�k × �E − iω �B = 0, from Faraday’s law

i�k × �B + μ�iω �E = 0, from MaxwellAmpere law

The first two conditions tell us that electromagnetic waves are trans

verse  both the vectors �E and �B are normal to the direction of prop

agation �k. The third condition �B = ω−1�k × �E actually says that both
of these vectors are actually normal to each other as well. Indeed, the

three vectors �k, �E and �B, taken in order, form a right handed triplet of
mutually orthogonal vectors. Again, putting the last two of the equa
tions together we get

�E = −
�k × �B

μ�ω
= −

�k ×
�
�k × �E

�

μ�ω2
=

�
�
��k

�
�
�
2

μ�ω2
�E

where we have used �k ∙ �E = 0 in the last part. For this to be consistent,
we must have

ω2

�
�
��k

�
�
�
2

=
1

μ�
= v2

Thus, the plane progressive waves (8.18) and (8.19) denote solutions to
the Maxwell’s equations only if

ω = vk

where k =
�
�
��k

�
�
� is the wavenumber of the wave. With this condition in

place, the four conditions above can be reduced to the two statements

�k ∙ �E = 0 (8.21)

�B =
�k × �E

ω
=

n̂× �E

v
(8.22)

where n̂ ≡
�k
k
is the unit vector in the direction of propagation of the

wave.
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�ki

�kr �kt

θi

θt
θr

Figure 8.1: Geometry of reflection and transmission at a planar inter
face

Let us now find the Poynting vector corresponding to such a plane
progressive wave. This is

�S = �E × �H =
1

μ
�E × �B =

1

μv
�E ×

�
n̂× �E

�

where we have used (8.22). Using the fact that n̂ ∙ �E = 0 we arrive at

�S =
E2

μv
n̂ (8.23)

Thus the amount of energy a plane progressive electromagnetic wave
carries per unit area per unit time is propotional to E2 , the constant of
proportionality being 1

μv
. In addition, this also shows that the energy

flows in the same direction as that of wave propagation (although this
sounds inevitable  it actually is not the case when light travels through
an anisotropic medium!).

8.4 Reflection and transmission of electro

magnetic waves at a planar interface

Let us now turn to consider what will happen if a plane progressive
electromagnetic wave travelling through a linear isotropic medium where
its speed is v1 were to be incident at an interface with another such
medium, where its speed is v2. For simplicity, we consider both media
to be semiinfinite and their interface to be a plane. In the following,
the incident, the reflected and the transmitted waves are denoted by
the indices i, r and t respectively.

What will happen here is determined by the continuity conditions

1. The tangential components of �E and �H are continuous across the
interface
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2. The normal components of �D and �B are continuous across the
interface.

The fact that these conditions must be obeyed at all times and at all
points on the interface has immediate consequences.

8.4.1 Laws of reflection and transmission (refraction)

Since the time dependence of the incident, reflected and transmitted
fields are governed by the factors e−iωit, e−iωrt and e−iωtt, respectively,
we must have

ωi = ωr = ωt = ω (say) .

Thus we have an explanation for the very important fact that frequency
does not change on reflection or transmission. Again, the fact that the

continuity conditions must work all over the interface tells us that �ki ∙�r,
�kr ∙ �r and �kt ∙ �r must change by the same amount as we move on the
interface. This means that for two points �r1 and �r2 on the interface, we
must have

�ki ∙ �r1 − �ki ∙ �r2 = �kr ∙ �r1 − �kr ∙ �r2 = �kt ∙ �r1 − �kt ∙ �r2

Since �r1 and �r2 are arbitrary points on the interface, we must have

�ki ∙ �ρ = �kr ∙ �ρ = �kt ∙ �ρ

where �ρ is an arbitrary vector on the interface. This means that the

vectors �ki−�kr and �ki−�kt are normal to the interface. Thus both �kr and
�kt are in the plane of incidence  which is the plane defined by �ki  the
direction of incidence and N̂  the normal to the interface. Again, we
must have

N̂ × �ki = N̂ × �kr = N̂ × �kt

Taking magnitudes of both sides give us
�
�
��ki

�
�
� sin θi =

�
�
��kr

�
�
� sin θr =

�
�
��kt

�
�
� sin θt

Since the frequency is the same for all three waves we have

sin θi = sin θr =
v1

v2

sin θt

The first equality above gives us the law of reflection, θi = θr  while the
second one gives us Snell’s law :

sin θi

sin θt

=
v1

v2

= n (8.24)

where n ≡ v1

v2

is the refractive index of the second medium with respect
to the first.
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�ki

�Ei

�Bi

�kr

�Er

�Br �kt

�Et

�Bt

Figure 8.2: Reflection and transmission for normal incidence

8.4.2 Normal incidence

We next turn our attention to the question of how much of the inci
dent energy is reflected and how much is transmitted. As a warmup
exercise, we will start with the easier case of normal incidence, θi = 0.
Let the incident electric field �Ei be in the plane of the paper at a given

instant of time as shown in figure (8.2) . In this case, the field �Bi will
be pointing out of the plane of the paper. A reflection in the plane of

the paper will leave the incident fields the same (note that �Bi, being a
pseudovector stays the same despite being perpendicular to the plane
of the reflection), and will also not affect the two media. This means
that the resulting reflected and transmitted electromagnetic fields will

also stay the same under this reflection. Thus both �Er and �Et must be

in the plane (and being perpendiculer to �kr and �kt, respectively, must

be in the directions shown), and �Br and �Bt out of the plane (for the
directions of �Er and �Et shown, �Bt must be out of the plane and �Br

into the plane). For this particular geometry, the normal components
of each of the fields is zero  and thus the continuity conditions for Dn

and Bn are trivially satisfied. The continuity conditions for �Et and �Ht

gives us the following :

Ei + Er = Et

1

μ1v1

(Ei − Er) =
1

μ2v2

Et

These can be easily solved to get

Et

Ei

=
2

1 + μ1

μ2

n
→

2

1 + n

Er

Ei

=
1− μ1

μ2

n

1 + μ1

μ2

n
→

1− n

1 + n

where the last part in each expression is the approximation for non
magnetic materials for which μ1 ≈ μ2 ≈ μ0 (Note that most magnetic
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substances are opaque to light anyway  so this is usually a good ap
proximation to make). To find the amount of incident energy that is
reflected and transmitted we must use the Poynting vector :

R ≡

�
�
��Sr

�
�
�

�
�
��Si

�
�
�

=

�
�
� �Er

�
�
�
2

�
�
� �Ei

�
�
�
2

=

�
1− μ1

μ2

n

1 + μ1

μ2

n

�2

→

�
1− n

1 + n

�2

(8.25)

T ≡

�
�
��St

�
�
�

�
�
��Si

�
�
�

=
μ1v1

μ2v2

�
�
� �Et

�
�
�
2

�
�
� �Ei

�
�
�
2

=
4μ1

μ2

n
�
1 + μ1

μ2

n
�2
→

4n

(1 + n)
2

(8.26)

As expected from conservation of energy, we have

R + T = 1. (8.27)

Equations (8.25) and (8.26) are called Fresnel’s equations for the
special case of normal incidence. We now turn to the more general
case of oblique incidence.

8.4.3 Fresnel’s equations for oblique incidence

In the case of oblique incidence, the incident wave vector �ki and the
normal to the interface N̂ together define a unique plane of incidence 

which, as we have already seen, also contains the wavevectors �kr and
�kt . Reflecting the system in this plane does leave the wavevectors and
the media intact. However, since the electric and magnetic fields in
this case are not necessarily in and out of the plane of incidence in
this case, we no longer have the symmetry that we used while arguing
about normal incidence. However in this case it is easy to see that if
we consider the electric field to be in the plane of incidence (and then
the corresponding magnetic field must be perpendicular to it) then we

do have the symmetry and hence the resulting fields �Er and �Et must
be in the plane of incidence as before. A similar argument shows easily

that if the incident �Ei is perpendicular to the plane of incidence, then
so must be �Er and �Et. In this case, it makes sense to consider these
two cases separately. The case of the more general direction of �Ei can
be easily treated by superposition.

8.4.3.1 Electric fields in the plane of incidence

It is easy to see that the continuity conditions for �Et and �Ht gives us,
in this case, the two equations

Ei cos θi + Er cos θr = Et cos θt

1

μ1v1

(Ei − Er) =
1

μ2v2

Et



CHAPTER 8. ELECTROMAGNETIC WAVES 8.9

�ki

�Ei
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�kr
�Er

�Br

�kt

�Et

�Bt
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θt
θr

Figure 8.3: Reflection and transmission at a planar interface for the
incident electric field in the plane of incidence

which can be rewritten in the form

Ei + Er =
cos θt

cos θi

Et

Ei − Er =
μ1

μ2

nEt

which are solved easily to yield

Er

Ei

=

cos θt

cos θi

− μ1

μ2

n

cos θt

cos θi

+ μ1

μ2

n
→

cos θt

cos θi

− n

cos θt

cos θi

+ n

Et

Ei

=
2

cos θt

cos θi

+ μ1

μ2

n
→

2
cos θt

cos θi

+ n

To find the reflection and transmission coefficients in this case we
must consider the energy carried away in a direction normal to the
interface by the reflected and transmitted waves. Thus

R ≡

�
�
��Sr ∙ N̂

�
�
�

�
�
��Si ∙ N̂

�
�
�

=

�
�
� �Er

�
�
�
2

�
�
� �Ei

�
�
�
2

=

�
cos θt

cos θi

− μ1

μ2

n

cos θt

cos θi

+ μ1

μ2

n

�2

→

�
cos θt

cos θi

− n

cos θt

cos θi

+ n

�2

(8.28)

T ≡

�
�
��St ∙ N̂

�
�
�

�
�
��Si ∙ N̂

�
�
�

=

1

μ2v2

�
�
� �Et

�
�
�
2

cos θt

1

μ1v1

�
�
� �Ei

�
�
�
2

cos θi

=
4μ1

μ2

n cos θt

cos θi

�
cos θt

cos θi

+ μ1

μ2

n
�2
→

4n cos θt

cos θi

�
cos θt

cos θi

+ n
�2
(8.29)

As you can easily check, we get R + T = 1 as expected.
If n > 1 it is well known that the transmitted beam bends towards

the normal, i.e. θt ≤ θi, so that cos θt

cos θi

≥ 1 . Thus it is possible for R to
vanish for some θi. The same holds for n < 1. It is easy to see that this
happens for

cos θt

cos θi

= n =
sin θi

sin θt
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Figure 8.4: Reflection and transmission at a planar interface for the
incident electric field out of the plane of incidence

so that sin (2θi) = sin (2θt). Since θt �= θi (θt = θi is possible only for

normal incidence, in which case R =
�

1−n
1+n

�2

�= 0), we must have

2θt = π − 2θi

or
θt + θr =

π

2

which means geometrically that the reflected and transmitted beams
are perpendicular to each other. The angle of incidence is then easily
seen to satisfy

tan θi = n

This angle of incidence is called the Brewster angle. At this angle of
incidence, the reflected beam is completely polarized with the electric
field perpendicular to the plane of incidence (as you will see soon, this
component does not vanish!).

8.4.3.2 Electric fields normal to the plane of incidence

In this case, reflection in the plane of incidence reverses both the inci
dent electric field and the incident magnetic field (which is in the plane
of incidence in this case). Thus, the resulting reflected and transmitted
fields must be reversed on reflection as well  which means that both
�Et and �Er must be normal to the plane of incidence as well.

Continuity of �Et and �Ht leads in this case to the equations

Ei + Er = Et

cos θi

μ1v1

(Ei − Er) =
cos θt

μ2v2

Et
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which leads to the solution

Er

Ei

=
1− μ1

μ2

n cos θt

cos θi

1 + μ1

μ2

n cos θt

cos θi

→
1− n cos θt

cos θi

1 + n cos θt

cos θi

Et

Ei

=
2

1 + μ1

μ2

n cos θt

cos θi

→
2

1 + n cos θt

cos θi

In this case, the reflection and transmission coefficients are

R =

�
1− μ1

μ2

n cos θt

cos θi

1 + μ1

μ2

n cos θt

cos θi

�2

→

�
1− n cos θt

cos θi

1 + n cos θt

cos θi

�2

(8.30)

T =
4μ1

μ2

n cos θt

cos θi

�
1 + μ1

μ2

n cos θt

cos θi

�2
→

4n cos θt

cos θi

�
1 + n cos θt

cos θi

�2
(8.31)

which obey R + T = 1 , as always!


